ICTRT Meeting

July 18-19, 2006

Members in attendance: Casey Baldwin, Pete Hassemer, Charlie Petrosky, Fred Utter,

Rich Carmichael, Phil Howell, Michelle McClure, Tom Cooney

Non-members in attendance: Damon Holzer, Don Matheson, Jeff Jorgenson

- 1. Current status assessments
 - a. Update bar chart for the UCMET-ch (numbers from Damon) Don
 - b. Update viability sections in UCMET and UCENT to use productivity At 75% threshold -- Don
 - c. Need a consistent summary section for each population
 - d. Develop ESU and MPG level overviews with AP & SSD results
 - e. Atlas of assessments
 - i. Include extirpated areas memo, ESU / MPG memos (and viability document?)
 - f. Group discussion to focus on select SSD ratings
 - i. harvest effects on steelhead
 - ii. phenotypic metric (example in Tucannon or Wenatchee)
 - 1. difficult to separate from life history
 - 2. standardize approach
 - 3. evaluate specific examples
 - iii. selectivity
 - iv. spawner composition
 - 1. evaluate examples to develop consensus
 - v. estuary habitat clarification
 - g. integrating across SSD metrics
 - i. clarify rounding of decimals
 - 1. possible score of 0.5 in goal B
 - a. less than 0.5 round to 0
 - b. 0.67 will round up
 - 2. round to higher risk level
 - 3. if you have a high risk, cannot get to low for the metric
 - 4. for goal b in table, include the mean score
 - ii. Choose groups to review AP and SSD sections
 - h. Review process for making into a TRT product
 - i. Small group responsible for pulling everything into one package
 - ii. Assign two reviewers to each assessment
- 2. Reviewing recovery plans
 - a. Timeline for recovery plans
 - i. Upper Columbia--early august (goals, limiting factors, actions, M&E)
 - ii. Snake--late August or early September (goals, limiting factors, actions, M&E)
 - iii. Mid Columbia--draft in late September (actions, action analysis awaiting hydro actions)

- b. Discussion on TRT Review Questions to be addressed in recovery plans—do the questions get at the bottom line?
 - i. Additions / modifications
 - 1. 2.d. Add language on threats (past, present or future)
 - a. also add this language to beginning of document
 - 2. Place for evaluating estuary or lower mainstem action proposals (7.a. and/or change question 3 to Tributary/Estuary)
 - 3. Insert ESU and/or MPG in places
 - 4. expand question 7 to include treatment of the likelihood that actions in the plan will get you to the goals (rate and magnitude)
 - a. section c should specify at the ESU level
 - b. discuss a range of plans
 - c. timeline (was it considered in the document? Was the response timeframe considered? Are the time frames realistic?)
 - 5. additional questions for plans with multiple ESUs
 - ii. rating system for the plans
 - 1. categories or continuum
 - a. describe key elements for each category
 - 2. summary paragraph with discussion of key problematic areas
 - a. discuss deficiencies or inadequacies
 - b. address successful pieces
 - c. leave the writer a sense of where the plan lies with respect to some continuum
 - d. lead off the summary with some overall language describing
 - i. or consider starting off by summarizing the plan's aim (i.e. x% recovery over x # of years)
 - e. construct a benchmark paragraph (ideal plan)
- c. Provide a thorough and consistent review in a time-efficient manner
- d. Inclusion of modeling results to date
- e. Six sections for review of recovery plans (excluding status assessment)
 - i. Limiting factors
 - 1. form a small subgroup to review before other steps are addressed
 - ii. integration across H categories
- 3. Redrawing population boundaries base on biological information
 - a. Tucannon
- 4. Update on Fall Chinook modeling
 - a. Workgroup of TRT members with Billy Conner (and passage modeling people) set up to develop life-history model for SR Fall Chinook
 - i. Zabel schematic (H.O. #2)

- ii. Many data gaps exist
- iii. Deschutes as a surrogate population (good vs. poor abundance years)
- iv. Over-wintering behavior from Clearwater fish
 - 1. Casey to find proportion of over-wintering fall chinook from Hanford reach
 - 2. Productivity issue vs. diversity issue (there still exists a significant component of sub-yearling type fish) both patterns are showing positive returns
- v. Current timing of migration is later, but moving back toward historic trends
- 5. phenotype & selectivity discussion
 - a. selective effects must affect 25% of a significant segment of the population
 - b. look for evidence of selective harvest
 - i. start with b-run steelhead (Tom and Don) (Howard Birge can run data) www.rmpc.org
 - 1. not enough info for SRSS
 - c. does the fact that b-run fish are harvested at a higher rate imply selectivity
 - i. no a & b populations, so not at the population level
 - d. appendix at the ESU level with relevant ratings across populations (lit. review and interpretation)
 - e. Michelle, Charlie and Jeff to pull together recent selectivity work from the science center (hydropower, etc.)
 - i. Describe "significant component"
 - ii. Evaluate UC as well (differential mortality of juveniles)
- 6. Questions to Guide Review of Recovery Plans (workgroup)
 - a. Components of a biologically robust plan
 - i. Logical flow including a statement of desired status and a current status assessment AND identification of limiting factors, threats, actions and biological considerations for prioritization of actions
 - ii. Treatment or consideration of impacts across the entire life-cycle
 - iii. Empirical/analytical basis for identifying limiting factors and estimating response to recovery actions consider
 - iv. Implementation strategy including consideration of time frame (for implementation and realization of effects)
 - v. Adaptive management framework including monitoring, evaluation as well as mechanisms to incorporate information gained into management decisions
 - b. Modification of questions for review
 - i. Ouestion #1
 - 1. Added ESU, MPG
 - ii. Ouestion #2
 - 1. Combined modeling and analysis into the same heading
 - 2. Added limited factors and threats
 - iii. Question #3 (Habitat)

- 1. Added language at the top to describe habitat elements (tributary, estuary, lake, mainstem)
- 2. Changed e and f to be more specific
- iv. Question #7 (Integration)
 - 1. Is the likely magnitude and rate of improvement consistent with the extinction risk of the population, MPG and ESU?
- v. Question #8 (Monitoring, evaluation and adaptive management)
 - 1. how well does the proposed monitoring and evaluation program address identified areas of uncertainty?
 - 2. are specific check-ins identified, either in time, or at the acquisition of particular endpoints?
- vi. question #9 (Michelle's email)
- 7. Update to the extirpated areas memo
 - a. Benefit of reintroduction
 - i. Potential to develop local adaptation
 - ii. Added ecological function
 - iii. Gained protection against catastrophic events
 - b. Five key points
 - i. Discuss reasoning for keeping options open
 - ii. Added brief discussion of stray vs. remnant (historic) hatchery fish
 - iii. Added discussion of chinook currently in the Clearwater and context in reintroduction (within SRSS section)
 - 1. opportunity to evaluate local adaptations
 - 2. reintroduction strategies
 - 3. connectivity between lower SR and GR
 - iv. clarification of introduction
 - v. added paragraph describing rational for using an adaptive management approach (short and long-term risks)
 - 1. AP and SSD benefits from local adaptation
- 8. Steelhead intrinsic potential analysis
 - a. Treatment of wide mainstem areas (important to 1/3 of the populations)
 - i. Lack of data on spawning in tributaries >35 meters
 - ii. Concern regarding influence of habitat on overall numbers
 - iii. Look for a way to discount width
 - 1. margin or depth range of wide mainstem areas
 - iv. need information on depth of steelhead spawning
 - 1. 0.41 to 1.51 meters (initial range)
 - v. review study that references redd distances from shore
 - vi. need average channel profiles for various stream widths
 - 1. tendency not to survey wide areas
 - 2. possible data in the Deschutes
- 9. Changes to the viability document
 - a. Distribute revised draft with changes highlighted
 - b. Leave extirpated areas draft as an attachment